Production of Nα-acetyl Tα1-HSA through in vitro acetylation by RimJ
نویسندگان
چکیده
Thymosin alpha 1 (Tα1) is an important immunomodulating agent with various clinical applications. The natural form of Tα1 is Nα -acetylated, which was supposed to be related to in vivo stability of the hormone. In this study, fusion protein Tα1-HSA was constructed and expressed in Pichia pastoris. RimJ, a Nα -acetyltransferase from E.coli, was also overexpressed and purified to homogeneity. In vitro acetylation of Tα1-HSA in the presence of RimJ and acetyl coenzyme A resulted in Nα -acetyl Tα1-HSA. The Nα -acetylation was determined by LC-MS/MS. Kinetic assay indicated that RimJ had a higher affinity to desacetyl Tα1 than to Tα1-HSA. Bioactivity assay revealed fully retained activity of Tα1 when the hormone was connected to the N-terminus of the fusion protein, while the activity was compromised in our previously constructed HSA-Tα1. With fully retained activity and N-terminal acetylation, Nα -acetyl Tα1-HSA was expected to be a more promising pharmaceutical agent than Tα1.
منابع مشابه
Production of Nα-acetylated thymosin α1 in Escherichia coli
BACKGROUND Thymosin α1 (Tα1), a 28-amino acid Nα-acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining Nα-acetylation. In this study, we describe a novel produ...
متن کاملGeneration of Mature Nα-Terminal Acetylated Thymosin α1 by Cleavage of Recombinant Prothymosin α
N(α)-terminal acetylation of peptides plays an important biological role but is rarely observed in prokaryotes. N(α)-terminal acetylated thymosin α1 (Tα1), a 28-amino-acid peptide, is an immune modifier that has been used in the clinic to treat hepatitis B and C virus (HBV/HCV) infections. We previously documented N(α)-terminal acetylation of recombinant prothymosin α (ProTα) in E. coli. Here w...
متن کاملBiochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis
Nα-acetylation is a naturally occurring irreversible modification of N-termini of proteins catalyzed by Nα-acetyltransferases (NATs). Although present in all three domains of life, it is little understood in bacteria. The functional grouping of NATs into six types NatA - NatF, in eukaryotes is based on subunit requirements and stringent substrate specificities. Bacterial orthologs are phylogene...
متن کاملRimJ-mediated context-dependent N-terminal acetylation of the recombinant Z-domain protein in Escherichia coli.
N-terminal acetylation of the recombinant Z-domain protein depends on E. coli strains, expression vectors and amino acid residues near the N-terminus, and is enhanced by a high cellular level of RimJ.
متن کاملThe N-terminal acetyltransferase Naa10 is essential for zebrafish development
N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-ace...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017